Difference between revisions of "009C Sample Final 1, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 45: | Line 45: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
| − | \displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\ | + | \displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\ | & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\ | ||
Revision as of 13:40, 22 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Find the area enclosed by the curve.
| Foundations: |
|---|
| Area under a polar curve |
Solution:
(a)
| Step 1: |
|---|
| Insert sketch |
(b)
| Step 1: |
|---|
| Since the graph has symmetry (as seen in the graph), the area of the curve is |
|
|
| Step 2: |
|---|
| Using the double angle formula for , we have |
|
|
| Step 3: |
|---|
| Lastly, we evaluate to get |
|
|
| Final Answer: |
|---|
| (a) See Step 1 above. |
| (b) |