Difference between revisions of "009C Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
|First, we need to find the slope of the tangent line.  
 
|First, we need to find the slope of the tangent line.  
 
|-
 
|-
|Since <math>\frac{dy}{dt}=-4\sin t</math> and <math>\frac{dx}{dt}=3\cos t</math>,
+
|Since <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> and <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t</math>, we have
 
|-
 
|-
|we have <math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}</math>.
+
|
 +
::<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}</math>.
 
|-
 
|-
 
|So, at <math>t_0=\frac{\pi}{4}</math>, the slope of the tangent line is  
 
|So, at <math>t_0=\frac{\pi}{4}</math>, the slope of the tangent line is  
 
|-
 
|-
|<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}</math>.
+
|
 +
::<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}</math>.
 
|}
 
|}
  
Line 45: Line 47:
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|-
 
|-
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math>x(t)</math> and <math>y(t)</math>, we get
+
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math style="vertical-align: -5px">x(t)</math> and <math style="vertical-align: -5px">y(t)</math>, we get
 
|-
 
|-
|<math>x\bigg(\frac{\pi}{4}\bigg)=3\sin\bigg(\frac{\pi}{4}\bigg)=\frac{3\sqrt{2}}{2}</math> and
+
|
 +
::<math>x\bigg(\frac{\pi}{4}\bigg)=3\sin\bigg(\frac{\pi}{4}\bigg)=\frac{3\sqrt{2}}{2}</math> and
 
|-
 
|-
|<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}</math>.
+
|
 +
::<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}</math>.
 
|-
 
|-
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
Line 59: Line 63:
 
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is  
 
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is  
 
|-
 
|-
|<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>.
+
|
 +
::<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>.
 
|}
 
|}
  
Line 65: Line 70:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' See '''(a)''' above for the graph.  
+
|'''(a)''' See Step 1 above for the graph.  
 
|-
 
|-
|'''(b)''' <math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
+
|'''(b)''' <math style="vertical-align: -14px">y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:29, 22 February 2016

A curve is given in polar parametrically by

a) Sketch the curve.

b) Compute the equation of the tangent line at .

Foundations:  
Review tangent lines of polar curves

Solution:

(a)

Step 1:  
Insert sketch of curve

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since and , we have
.
So, at , the slope of the tangent line is
.
Step 2:  
Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
If we plug in into the equations for and , we get
and
.
Thus, the point is on the tangent line.
Step 3:  
Using the point found in Step 2, the equation of the tangent line at is
.
Final Answer:  
(a) See Step 1 above for the graph.
(b)

Return to Sample Exam