|
|
| Line 10: |
Line 10: |
| | <span class="exam">a) Show that <math style="vertical-align:-10%">f(x)</math> is continuous at <math style="vertical-align:0%">x=3</math>. | | <span class="exam">a) Show that <math style="vertical-align:-10%">f(x)</math> is continuous at <math style="vertical-align:0%">x=3</math>. |
| | | | |
| − | <span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math>f(x)</math> is differentiable at <math>x=3</math>. | + | <span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align:-10%">f(x)</math> is differentiable at <math style="vertical-align:0%">x=3</math>. |
| | | | |
| | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 10:34, 18 February 2016
Consider the following piecewise defined function:

a) Show that
is continuous at
.
b) Using the limit definition of the derivative, and computing the limits from both sides, show that
is differentiable at
.
Solution:
(a)
| Step 1:
|
| We first calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)}
. We have
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 3^{+}}f(x)}&=&\displaystyle {\lim _{x\rightarrow 3}4{\sqrt {x+1}}}\\&&\\&=&\displaystyle {4{\sqrt {3+1}}}\\&&\\&=&\displaystyle {8}\end{array}}}
|
| Step 2:
|
| Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{-}}f(x)}
. We have
|

|
| Step 3:
|
| Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(3)}
. We have
|
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(3)=4{\sqrt {3+1}}=8}
.
|
Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)=\lim _{x\rightarrow 3^{-}}f(x)=f(3)}
, is continuous.
|
(b)
| Step 1:
|
| We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
|
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{h\rightarrow 0^{-}}{\frac {f(3+h)-f(3)}{h}}}&=&\displaystyle {\lim _{h\rightarrow 0}{\frac {(3+h)+5-8}{h}}}\\&&\\&=&\displaystyle {\lim _{h\rightarrow 0}{\frac {h}{h}}}\\&&\\&=&\displaystyle {\lim _{h\rightarrow 0}1}\\&&\\&=&\displaystyle {1}\end{array}}}
|
| Step 2:
|
| Now, we have
|
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ &&\\ & = & \displaystyle{1}\\ \end{array}}
|
| Step 3:
|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}}
,
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}
is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3}
.
|
| Final Answer:
|
| (a) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)}
, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}
is continuous.
|
| (b) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}}
,
|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}
is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3}
.
|
Return to Sample Exam