Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
<span class="exam">a) Show that <math style="vertical-align:-10%">f(x)</math> is continuous at <math style="vertical-align:0%">x=3</math>.
 
<span class="exam">a) Show that <math style="vertical-align:-10%">f(x)</math> is continuous at <math style="vertical-align:0%">x=3</math>.
  
<span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math>f(x)</math> is differentiable at <math>x=3</math>.
+
<span class="exam">b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align:-10%">f(x)</math> is differentiable at <math style="vertical-align:0%">x=3</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 10:34, 18 February 2016

Consider the following piecewise defined function:

a) Show that is continuous at .

b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  

Solution:

(a)

Step 1:  
We first calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)} . We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{x\rightarrow 3^{+}}f(x)}&=&\displaystyle {\lim _{x\rightarrow 3}4{\sqrt {x+1}}}\\&&\\&=&\displaystyle {4{\sqrt {3+1}}}\\&&\\&=&\displaystyle {8}\end{array}}}
Step 2:  
Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{-}}f(x)} . We have
Step 3:  
Now, we calculate Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(3)} . We have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(3)=4{\sqrt {3+1}}=8} .
Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \lim _{x\rightarrow 3^{+}}f(x)=\lim _{x\rightarrow 3^{-}}f(x)=f(3)} , is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\lim _{h\rightarrow 0^{-}}{\frac {f(3+h)-f(3)}{h}}}&=&\displaystyle {\lim _{h\rightarrow 0}{\frac {(3+h)+5-8}{h}}}\\&&\\&=&\displaystyle {\lim _{h\rightarrow 0}{\frac {h}{h}}}\\&&\\&=&\displaystyle {\lim _{h\rightarrow 0}1}\\&&\\&=&\displaystyle {1}\end{array}}}
Step 2:  
Now, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\ &&\\ & = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ &&\\ & = & \displaystyle{1}\\ \end{array}}
Step 3:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} ,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3} .
Final Answer:  
(a) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is continuous.
(b) Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} ,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=3} .

Return to Sample Exam