Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 67: Line 67:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
| We have
 
|-
 
|-
|
+
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}</math>.
 +
|-
 +
|Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math>\sqrt{x^2}=-x</math>.
 +
|-
 +
|So, we have
 +
|-
 +
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>.
 
|}
 
|}
  
Line 75: Line 81:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
| We simplify to get
 +
|-
 +
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}</math>
 
|-
 
|-
|
+
|So, we have
 
|-
 
|-
|
+
|<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}</math>.
 
|}
 
|}
  
Line 89: Line 97:
 
|'''(b)''' <math>+\infty</math>
 
|'''(b)''' <math>+\infty</math>
 
|-
 
|-
|'''(c)'''  
+
|'''(c)''' <math>\frac{-3}{2}</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:31, 14 February 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Foundations:  
Review L'Hopital's Rule

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
.
So, we can cancel in the numerator and denominator. Thus, we have
.
Step 2:  
Now, we can just plug in to get
.

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is .

(c)

Step 1:  
We have
.
Since we are looking at the limit as goes to negative infinity, we have .
So, we have
.
Step 2:  
We simplify to get
So, we have
.
Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam