Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we compute <math>\frac{dy}{dx}</math>. We get
 
|-
 
|-
|
+
|<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x)</math>.
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 28: Line 24:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|To find the equation of the tangent line, we first find the slope of the line.
 +
|-
 +
|Using <math>x_0=1</math> in the formula for <math>\frac{dy}{dx}</math> from Step 1, we get
 
|-
 
|-
|
+
|<math>m=2(1)-\sin(2\pi)2\pi=2</math>.
 
|-
 
|-
|
+
|To get a point on the line, we plug in <math>x_0=1</math> into the equation given.
 +
|-
 +
|So, we have <math>y=1^2+\cos(2\pi)=2</math>.
 +
|-
 +
|Thus, the equation of the tangent line is <math>y=2(x-1)+2</math>.
 
|}
 
|}
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|<math>\frac{dy}{dx}=2x-\sin(\pi(x^2+1))(2\pi x)</math>
 +
|-
 +
|<math>y=2(x-1)+2</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:22, 14 February 2016

If

compute and find the equation for the tangent line at . You may leave your answers in point-slope form.

Foundations:  

Solution:

Step 1:  
First, we compute . We get
.
Step 2:  
To find the equation of the tangent line, we first find the slope of the line.
Using in the formula for from Step 1, we get
.
To get a point on the line, we plug in into the equation given.
So, we have .
Thus, the equation of the tangent line is .
Final Answer:  

Return to Sample Exam