Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
Line 81: Line 81:
 
<br>
 
<br>
 
<span style="font-size:135%"> <font face=Times Roman>(a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. </font face=Times Roman> </span>
 
<span style="font-size:135%"> <font face=Times Roman>(a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. </font face=Times Roman> </span>
 +
<br>
 +
 +
== 9. Related Rates: ==
 +
<br>
 +
<span style="font-size:135%"> <font face=Times Roman>  A bug is crawling along the <math style="vertical-align: 0%;">x</math>-axis at a constant speed of &nbsp; <math style="vertical-align: -44%;">\frac{dx}{dt}=30</math>.
 +
How fast is the distance between the bug and the point <math style="vertical-align: -17%;">(3,4)</math> changing
 +
when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''.  </font face=Times Roman> </span>
 
<br>
 
<br>

Revision as of 07:58, 23 March 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


1. Find the following limits:

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.}

(c)  

(d)  

(e)  


2. Find the derivatives of the following functions:

(a)  

(b)  

(c)  
,br.

3. (Version I) Consider the following function:


(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Repeat the above for the function:


(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} ?  Use the definition of the derivative to motivate your answer.

4. Use implicit differentiation to find:


an equation for the tangent line to the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x^{3}-2xy+y^{3}=-1} at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,1)} .

5. Consider the function:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.}
(a) Find the intervals where the function is increasing and decreasing.

(b) Find the local maxima and minima.

(c) Find the intervals on which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is concave upward and concave downward.

(d) Find all inflection points.

(e) Use the information in the above to sketch the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .

6. Find the vertical and horizontal asymptotes of:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.}

7. An optimization problem:


A farmer wishes to make 4 identical rectangular pens, each with 500 sq. ft. of area. What dimensions for each pen will use the least amount of total fencing?

<< insert image here >>

8. Linear Approximation:


(a) Find the linear approximation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(x)} to the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sec x} at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\pi/3} .

9. Related Rates:


A bug is crawling along the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis at a constant speed of   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dx}{dt}=30} . How fast is the distance between the bug and the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3,4)} changing when the bug is at the origin? (Note that if the distance is decreasing, then you should have a negative answer).