Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
|Thus, the integral becomes
 
|Thus, the integral becomes
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^{-a}e^{u}du=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\left.e^{u}\right|_0^{-a}=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)</math>
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-\int_0^{-a}e^{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 45: Line 52:
 
|Now, we evaluate to get  
 
|Now, we evaluate to get  
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)=\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1=\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}\\
 +
\end{array}</math>
 
|-
 
|-
 
|Using L'Hopital's Rule, we get  
 
|Using L'Hopital's Rule, we get  
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1=0+1=1</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\
 +
&&\\
 +
& = & \displaystyle{0+1}\\
 +
&&\\
 +
& = & \displaystyle{1}\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 77: Line 100:
 
|We integrate to get  
 
|We integrate to get  
 
|-
 
|-
|<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \left.-2u^{\frac{1}{2}}\right|_{3}^{4-a}=\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}=2\sqrt{3}</math>
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{3}}\\
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 12:00, 10 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-x}dx} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-x}} .
Thus, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx}
Step 2:  
For the remaining integral, we need to use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=-x} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-dx} .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=-x} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=-a} .
Thus, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-\int_0^{-a}e^{u}~du}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} -xe^{-x}\bigg|_0^a-e^{u}\bigg|_0^{-a}}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\ \end{array}}
Step 3:  
Now, we evaluate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1}\\ \end{array}}
Using L'Hopital's Rule, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{\infty} xe^{-x}~dx} & = & \displaystyle{}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1}\\ &&\\ & = & \displaystyle{0+1}\\ &&\\ & = & \displaystyle{1}\\ \end{array}}

(b)

Step 1:  
First, we write Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}} .
Now, we proceed by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. We let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=4-x} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-dx} .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=4-x} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=4-1=3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=4-a} .
Thus, the integral becomes
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-du}{\sqrt{u}}} .
Step 2:  
We integrate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^4 \frac{dx}{\sqrt{4-x}}} & = & \displaystyle{\lim_{a\rightarrow 4} -2u^{\frac{1}{2}}\bigg|_{3}^{4-a}}\\ &&\\ & = & \displaystyle{\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}}\\ &&\\ & = & \displaystyle{2\sqrt{3}}\\ \end{array}}
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{3}}

Return to Sample Exam