Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 27: | Line 27: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We first distribute to get <math>\int e^x(x+\sin(e^x))~dx=\int e^xx~dx+\int e^x\sin(e^x)~dx</math>. | + | |We first distribute to get |
| + | |- | ||
| + | |<math>\int e^x(x+\sin(e^x))~dx=\int e^xx~dx+\int e^x\sin(e^x)~dx</math>. | ||
|- | |- | ||
|Now, for the first integral on the right hand side of the last equation, we use integration by parts. | |Now, for the first integral on the right hand side of the last equation, we use integration by parts. | ||
|- | |- | ||
| − | |Let <math>u=x</math> and <math>dv=e^xdx</math>. Then, <math>du=dx</math> and <math>v=e^x</math>. | + | |Let <math>u=x</math> and <math>dv=e^xdx</math>. Then, <math>du=dx</math> and <math>v=e^x</math>. |
|- | |- | ||
| − | |<math>\int e^x(x+\sin(e^x))~dx=\bigg(xe^x-\int e^x~dx \bigg)+\int e^x\sin(e^x)~dx=xe^x-e^x+\int e^x\sin(e^x)~dx</math> | + | |So, we have |
| + | |- | ||
| + | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int e^x(x+\sin(e^x))~dx=} & = & \displaystyle{\bigg(xe^x-\int e^x~dx \bigg)+\int e^x\sin(e^x)~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{xe^x-e^x+\int e^x\sin(e^x)~dx}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 41: | Line 50: | ||
|Now, for the one remaining integral, we use <math>u</math>-substitution. | |Now, for the one remaining integral, we use <math>u</math>-substitution. | ||
|- | |- | ||
| − | |Let <math>u=e^x</math>. Then, <math>du=e^xdx</math>. So, we have | + | |Let <math>u=e^x</math>. Then, <math>du=e^xdx</math>. |
| + | |- | ||
| + | |So, we have | ||
|- | |- | ||
| − | |<math>\int e^x(x+\sin(e^x))~dx=xe^x-e^x+\int \sin(u)~du=xe^x-e^x-\cos(u)+C=xe^x-e^x-\cos(e^x)+C</math> | + | | |
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int e^x(x+\sin(e^x))~dx} & = & \displaystyle{xe^x-e^x+\int \sin(u)~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{xe^x-e^x-\cos(u)+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{xe^x-e^x-\cos(e^x)+C}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
Revision as of 11:40, 10 February 2016
Compute the following integrals.
a)
b)
c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^3x~dx}
| Foundations: |
|---|
| Review Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution |
| Integration by parts |
| Partial fraction decomposition |
| Trig identities |
Solution:
(a)
| Step 1: |
|---|
| We first distribute to get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x(x+\sin(e^x))~dx=\int e^xx~dx+\int e^x\sin(e^x)~dx} . |
| Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x} . |
| So, we have |
|
| Step 2: |
|---|
| Now, for the one remaining integral, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=e^x} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=e^xdx} . |
| So, we have |
|
(b)
| Step 1: |
|---|
| First, we add and subtract Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} from the numerator. So, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{2x^2+1}{2x^2+x}~dx=\int\frac{2x^2+x-x+1}{2x^2+x}~dx=\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx=\int ~dx+\int\frac{1-x}{2x^2+x}~dx } . |
| Step 2: |
|---|
| Now, we need to use partial fraction decomposition for the second integral. |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x^2+x=x(2x+1)} , we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}} . |
| Multiplying both sides of the last equation by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(2x+1)} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-x=A(2x+1)+Bx} . |
| If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} , the last equation becomes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1=A} . |
| If we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-\frac{1}{2}} , then we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{2}=-\frac{1}{2}B} . Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=-3} . |
| So, in summation, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}} . |
| Step 3: |
|---|
| If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{2x^2+1}{2x^2+x}~dx=\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx} . |
| Step 4: |
|---|
| For the final remaining integral, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x+1} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{2}=dx} . |
| Thus, our final integral becomes |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx=x+\ln x+\int\frac{-3}{2u}~du=x+\ln x-\frac{3}{2}\ln u +C} . |
| Therefore, the final answer is |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C} |
(c)
| Step 1: |
|---|
| First, we write Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int \sin^2 x \sin x~dx} . |
| Using the identity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x=1-\cos^2x} . If we use this identity, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx} . |
| Step 2: |
|---|
| Now, we proceed by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos x} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin x dx} . So we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x~dx=\int -(1-u^2)~du=-u+\frac{u^3}{3}+C=-\cos x+\frac{\cos^3x}{3}+C} . |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xe^x-e^x-\cos(e^x)+C} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+\ln x-\frac{3}{2}\ln (2x+1) +C} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\cos x+\frac{\cos^3x}{3}+C} |