Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Now, we proceed using trig substitution. Let <math>\theta=\tan x</math>. Then, <math>d\theta=\sec^2xdx</math>
+
|Now, we proceed using trig substitution. Let <math>\theta=\tan x</math>. Then, <math>d\theta=\sec^2xdx</math>.
 +
|-
 +
|So, the integral becomes
 +
|-
 +
|<math>L=\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx=\int_{\theta=0}^{\theta=2\pi}\sec^3xdx</math>.
 +
|-
 +
|We integrate to get <math>L=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}</math>.
 
|}
 
|}
  
 
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Since <math>\theta=\tan x</math>, we have <math>x=\tan^{-1}\theta</math>.
 +
|-
 +
|So, we have
 +
|-
 +
|<math>L=\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}</math>.
 +
|-
 +
|
 +
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 13:07, 9 February 2016

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
The formula for the arc length of a polar curve with is
.

Solution:

Step 1:  
First, we need to calculate . Since .
Using the formula in Foundations, we have
.
Step 2:  
Now, we proceed using trig substitution. Let . Then, .
So, the integral becomes
.
We integrate to get .
Step 3:  
Since , we have .
So, we have
.
Final Answer:  

Return to Sample Exam