Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 55: Line 55:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
 +
|-
 +
|So, first we need to find <math>\frac{dy'}{d\theta}</math>.
 +
|-
 +
|We have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\
 +
\end{array}</math>
 +
|-
 +
|since <math>\sin^2\theta+\cos^2\theta=1</math> and <math>2\cos^2(2\theta)+2\sin^2(2\theta)=2</math>.
 
|}
 
|}
  
Line 63: Line 78:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
| Now, using the resulting formula for <math>\frac{dy'}{d\theta}</math>, we get
 
|-
 
|-
|
+
|<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>.
 
|-
 
|-
 
|
 
|
Line 75: Line 90:
 
|'''(a)''' See '''(a)''' above for the graph.
 
|'''(a)''' See '''(a)''' above for the graph.
 
|-
 
|-
|'''(b)''' <math>y'=\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
+
|'''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
 
|-
 
|-
|'''(c)'''  
+
|'''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:32, 9 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Compute .

c) Compute .

Foundations:  

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
.
Since , .
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have .
So, first we need to find .
We have
since and .
Step 2:  
Now, using the resulting formula for , we get
.
Final Answer:  
(a) See (a) above for the graph.
(b)
(c)

Return to Sample Exam