Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 41: Line 41:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|This is a telescoping series. First, we find the partial sum of this series.
 
|-
 
|-
|
+
|Let <math>s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>.
 
|-
 
|-
|
+
|Then, <math>s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>.
 
|}
 
|}
  
Line 51: Line 51:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Thus, <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math>
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 67: Line 60:
 
|'''(a)''' <math>\frac{e}{e+2}</math>
 
|'''(a)''' <math>\frac{e}{e+2}</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>\frac{1}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:44, 8 February 2016

Find the sum of the following series:

a)

b)

Foundations:  
Review geometric series.

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since , . So,
.

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let .
Then, .
Step 2:  
Thus,


Final Answer:  
(a)
(b)

Return to Sample Exam