Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
   <tr>
 
   <tr>
 
     <td align = "center"><math>0</math></td>
 
     <td align = "center"><math>0</math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math> \cos^2x </math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math>  \frac{1}{2}</math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> \frac{1}{2}</math></td>
 
   </tr>
 
   </tr>
 
  <tr>
 
  <tr>
 
     <td align = "center"><math>1</math></td>
 
     <td align = "center"><math>1</math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math>  -2\cos x\sin x</math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math>  -1 </math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> -1 </math></td>
 
   </tr>
 
   </tr>
 
  <tr>
 
  <tr>
 
     <td align = "center"><math>2</math></td>
 
     <td align = "center"><math>2</math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> 2\sin^2x-2\cos^2x </math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math>  0 </math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> 0 </math></td>
 
   </tr>
 
   </tr>
 
  <tr>
 
  <tr>
 
     <td align = "center"><math>3</math></td>
 
     <td align = "center"><math>3</math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> 8\sin x\cos x </math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math>  4 </math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> \frac{2}{3}</math></td>
 
   </tr>
 
   </tr>
 
  <tr>
 
  <tr>
 
     <td align = "center"><math>4</math></td>
 
     <td align = "center"><math>4</math></td>
     <td align = "center"><math>  </math></td>
+
     <td align = "center"><math> 8\cos^2x-8\sin^2x </math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> 0 </math></td>
     <td align = "center"><math> </math></td>
+
     <td align = "center"><math> 0 </math></td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>

Revision as of 10:05, 8 February 2016

Find the Taylor polynomial of degree 4 of at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=\frac{\pi}{4}} .

Foundations:  

Solution:

Step 1:  
First, we make a table to find the coefficients of the Taylor polynomial.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{(n)}(x) } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{(n)}(a) } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f^{(n)}(a)}{n!} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos^2x } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\cos x\sin x} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sin^2x-2\cos^2x } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8\sin x\cos x } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8\cos^2x-8\sin^2x } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 }
Step 2:  
Final Answer:  

Return to Sample Exam