Difference between revisions of "Multivariate Calculus 10B, Problem 1"
Jump to navigation
Jump to search
| Line 14: | Line 14: | ||
! | ! | ||
|- | |- | ||
| + | | | ||
| + | |||
| + | function draw() { | ||
| + | var canvas = document.getElementById('canvas'); | ||
| + | if (canvas.getContext){ | ||
| + | var ctx = canvas.getContext('2d'); | ||
| + | |||
| + | ctx.beginPath(); | ||
| + | ctx.moveTo(75,50); | ||
| + | ctx.lineTo(100,75); | ||
| + | ctx.lineTo(100,25); | ||
| + | |||
| + | } | ||
| + | } | ||
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math> | |Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math> | ||
Revision as of 22:29, 7 February 2016
Calculate the following integrals
- a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _0^1 \int_y^1 e^{\frac{y}{x}}~dxdy}
- b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy}
solution(a):
| Here we change order of integration, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)}
solution(b):
|