Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
'''solution(a):'''
 
'''solution(a):'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  
 
+
!
 
|-
 
|-
 
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math>
 
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math>

Revision as of 01:48, 7 February 2016

Calculate the following integrals

a)
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy}


solution(a):

Here we use change of variable, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx}