Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 80: Line 80:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We start by calculating <math>\frac{dy}{dx}</math>.
 +
|-
 +
|Since <math>y=1-x^2,~ \frac{dy}{dx}=-2x</math>.
 
|-
 
|-
|
+
|Using the formula given in the Foundations section, we have
 
|-
 
|-
|
+
|<math>S=\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we have <math>S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx</math>
 +
|-
 +
|We proceed by using trig substitution. Let <math>x=\frac{1}{2}\tan \theta</math>. Then, <math>dx=\frac{1}{2}\sec^2\theta d\theta</math>.
 +
|-
 +
|So, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}\\
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 +
|-
 +
|Now, we use <math>u</math>-substitution. Let <math>u=\sec \theta</math>. Then, <math>du=\sec \theta \tan \theta d\theta</math>.
 +
|-
 +
|So, the integral becomes
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int \frac{\pi}{2}u^2du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{6}u^3+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}\\
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|We started with a definite integral. So, using Step 2 and 3, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
S & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+4x^2}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3}\bigg|_0^1\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 106: Line 147:
 
|'''(a)''' <math>\ln (2+\sqrt{3})</math>
 
|'''(a)''' <math>\ln (2+\sqrt{3})</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>\frac{\pi}{6}(5\sqrt{5}-1)</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:31, 4 February 2016

a) Find the length of the curve

.

b) The curve

is rotated about the -axis. Find the area of the resulting surface.

Foundations:  
The formula for the length of a curve where is
.
integral of
The surface area of a function rotated about the -axis is given by
where .

Solution:

(a)

Step 1:  
First, we calculate .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have:
Step 3:  
Finally,

(b)

Step 1:  
We start by calculating .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have
We proceed by using trig substitution. Let . Then, .
So, we have
Step 3:  
Now, we use -substitution. Let . Then, .
So, the integral becomes
Step 4:  
We started with a definite integral. So, using Step 2 and 3, we have
Final Answer:  
(a)
(b)

Return to Sample Exam