Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 12: | Line 12: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |The formula for the length of a curve <math>y=f(x)</math> where <math>a\leq x \leq b</math> is <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>. | + | |The formula for the length <math>L</math> of a curve <math>y=f(x)</math> where <math>a\leq x \leq b</math> is |
| + | |- | ||
| + | |<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>. | ||
|- | |- | ||
|integral of <math>\sec x</math> | |integral of <math>\sec x</math> | ||
| + | |- | ||
| + | |The surface area <math>S</math> of a function <math>y=f(x)</math> rotated about the <math>y</math>-axis is given by | ||
| + | |- | ||
| + | |<math>S=\int 2\pi x ds</math> where <math>ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}</math>. | ||
|} | |} | ||
Revision as of 16:07, 4 February 2016
a) Find the length of the curve
- .
b) The curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~~~0\leq x \leq 1}
is rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis. Find the area of the resulting surface.
| Foundations: |
|---|
| The formula for the length Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} of a curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\leq x \leq b} is |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx} . |
| integral of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec x} |
| The surface area Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} of a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis is given by |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int 2\pi x ds} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}} . |
Solution:
(a)
| Step 1: |
|---|
| First, we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} . |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x} . |
| Using the formula given in the Foundations section, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_0^{\frac{\pi}{3}} \sqrt{1+(-\tan x)^2}~dx} . |
| Step 2: |
|---|
| Now, we have: |
|
| Step 3: |
|---|
| Finally, |
|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Step 3: |
|---|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln (2+\sqrt{3})} |
| (b) |