Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|-
 
|-
 
|The formula for the length of a curve <math>y=f(x)</math> where <math>a\leq x \leq b</math> is <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>.  
 
|The formula for the length of a curve <math>y=f(x)</math> where <math>a\leq x \leq b</math> is <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>.  
 +
|-
 +
|integral of <math>\sec x</math>
 
|}
 
|}
  
Line 43: Line 45:
 
&&\\
 
&&\\
 
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sec x ~dx}\\
 
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sec x ~dx}\\
&&\\
+
\end{array}</math>
& = & \ln |\sec x+\tan x|\bigg|_0^{\frac{\pi}{3}}\\
+
|-
 +
|
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Finally,
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
L& = & \ln |\sec x+\tan x|\bigg|_0^{\frac{\pi}{3}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\ln \bigg|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\bigg|-\ln|\sec 0 +\tan 0|}\\
 
& = & \displaystyle{\ln \bigg|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\bigg|-\ln|\sec 0 +\tan 0|}\\

Revision as of 16:52, 4 February 2016

a) Find the length of the curve

.

b) The curve

is rotated about the -axis. Find the area of the resulting surface.

Foundations:  
The formula for the length of a curve where is .
integral of

Solution:

(a)

Step 1:  
First, we calculate .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have:
Step 3:  
Finally,

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam