Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|The formula for the arc length <math>L</math> of a polar curve <math>r=f(\theta)</math> with <math>\alpha_1\leq \theta \leq \alpha_2</math> is
 +
|-
 +
|<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>.
 
|}
 
|}
  
Line 16: Line 18:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we need to calculate <math>\frac{dr}{d\theta}</math>. Since <math>r=\theta,~\frac{dr}{d\theta}=1</math>.
 
|-
 
|-
|
+
|Using the formula in Foundations, we have
 
|-
 
|-
|
+
|<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math>.
|-
 
|
 
 
|}
 
|}
  
Line 28: Line 28:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we proceed using trig substitution. Let <math>\theta=\tan x</math>. Then, <math>d\theta=\sec^2xdx</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
 +
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 15:34, 4 February 2016

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
The formula for the arc length of a polar curve with is
.

Solution:

Step 1:  
First, we need to calculate . Since .
Using the formula in Foundations, we have
.
Step 2:  
Now, we proceed using trig substitution. Let . Then,


Final Answer:  

Return to Sample Exam