Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
(→Temp 1) |
(→Temp 2) |
||
Line 40: | Line 40: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We use <math>u</math>-substitution. Let <math>u=x^4+2x^2+4</math>. Then, <math>du=(4x^3+4x)dx</math> and <math>\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration. | + | |We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4</math>. Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration. |
|- | |- | ||
− | |Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>. | + | |Plugging in our values into the equation <math style="vertical-align: -2px">u=x^4+2x^2+4</math>, we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -4px">u_2=2^4+2(2)^2+4=28</math>. |
|- | |- | ||
− | |Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}~du</math> | + | |Therefore, the integral becomes <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>. |
|- | |- | ||
| | | | ||
Line 54: | Line 54: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math> | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>. |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math> | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>. |
|} | |} | ||
+ | |||
== Temp 3 == | == Temp 3 == | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 23:58, 2 February 2016
Evaluate
- a)
- b)
Foundations: |
---|
Review -substitution |
Solution:
Temp 1
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
. |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
. |
Temp 2
(b)
Step 1: |
---|
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
So, we have |
. |
Temp 3
Final Answer: |
---|
(a) |
(b) |