Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 40: Line 40:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We use <math>u</math>-substitution. Let <math>u=x^4+2x^2+4</math>. Then, <math>du=(4x^3+4x)dx</math> and <math>\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.  
+
|We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4</math>. Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.  
 
|-
 
|-
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -2px">u=x^4+2x^2+4</math>, we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -4px">u_2=2^4+2(2)^2+4=28</math>.
 
|-
 
|-
|Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>
+
|Therefore, the integral becomes&nbsp; <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>.
 
|-
 
|-
 
|
 
|
Line 54: Line 54:
 
|We now have:
 
|We now have:
 
|-
 
|-
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>.
 
|-
 
|-
 
|So, we have  
 
|So, we have  
 
|-
 
|-
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>.
 
|}
 
|}
 +
 
== Temp 3 ==
 
== Temp 3 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 23:58, 2 February 2016

Evaluate

a)
b)


Foundations:  
Review -substitution

Solution:

Temp 1

(a)

Step 1:  
We multiply the product inside the integral to get
   .
Step 2:  
We integrate to get
   .
We now evaluate to get
   .

Temp 2

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes  .
Step 2:  
We now have:
   .
So, we have
   .

Temp 3

Final Answer:  
(a)
(b)

Return to Sample Exam