Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
|We multiply the product inside the integral to get  
 
|We multiply the product inside the integral to get  
 
|-
 
|-
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>   
+
| &nbsp;&nbsp; <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>.  
 
|}
 
|}
  
Line 28: Line 28:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.
+
| &nbsp;&nbsp; <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.
 
|-
 
|-
 
|We now evaluate to get
 
|We now evaluate to get
 
|-
 
|-
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>
+
| &nbsp;&nbsp; <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>.
 
|}
 
|}
 +
 
== Temp 2 ==
 
== Temp 2 ==
 
'''(b)'''
 
'''(b)'''

Revision as of 23:53, 2 February 2016

Evaluate

a)
b)


Foundations:  
Review -substitution

Solution:

Temp 1

(a)

Step 1:  
We multiply the product inside the integral to get
   .
Step 2:  
We integrate to get
   .
We now evaluate to get
   .

Temp 2

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes
Step 2:  
We now have:
So, we have

Temp 3

Final Answer:  
(a)
(b)

Return to Sample Exam