Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 73: Line 73:
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
|-
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\left.\tan(x)\right|_0^{\frac{\pi}{4}}</math>
+
| &nbsp;&nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}</math>
 
|}
 
|}
  
Line 81: Line 81:
 
|So, we get  
 
|So, we get  
 
|-
 
|-
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>.
 
|-
 
|-
 
|
 
|

Revision as of 23:04, 2 February 2016

This problem has three parts:

a) State the Fundamental Theorem of Calculus.
b) Compute   .
c) Evaluate .


Foundations:  
Review the Fundamental Theorem of Calculus.

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on , and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} be any antiderivative of .
Then, .

Temp 1

(b)

Step 1:  
Let . The problem is asking us to find .
Let and .
Then, .
Step 2:  
If we take the derivative of both sides of the last equation, we get by the Chain Rule.
Step 3:  
Now, and by the Fundamental Theorem of Calculus, Part 1.
Since , we have

Temp 2

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
  
Step 2:  
So, we get
   .
Final Answer:  
(a)
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on , and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .
(b)   .
(c) .

Return to Sample Exam