Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>.  
 
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>.  
 
|-
 
|-
|So, the integral becomes
+
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|-
 
|-
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math>
+
|Plugging in our values into the equation <math>u=-x</math>, we get <math>u_1=0</math> and <math>u_2=-a</math>.
 +
|-
 +
|Thus, the integral becomes
 +
|-
 +
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^{-a}e^{u}du=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\left.e^{u}\right|_0^{-a}=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we evaluate to get
 +
|-
 +
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)=\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1=\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1</math>.
 +
|-
 +
|Using L'Hopital's Rule, we get
 +
|-
 +
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1=0+1=1</math>.
 +
|-
 +
|
 
|}
 
|}
  
Line 65: Line 83:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>1</math>
 
|-
 
|-
 
|'''(b)'''   
 
|'''(b)'''   
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:26, 2 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
.
Using L'Hopital's Rule, we get
.

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam