Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 2: Line 2:
 
:::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>.
 
:::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>.
  
<span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2tdt</math>.
+
<span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2t~dt</math>.
  
 
<span class="exam">b) Find <math>f'(x)</math>.
 
<span class="exam">b) Find <math>f'(x)</math>.
Line 8: Line 8:
 
<span class="exam">c) State the fundamental theorem of calculus.
 
<span class="exam">c) State the fundamental theorem of calculus.
  
<span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math> without first computing the integral.
+
<span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)</math> without first computing the integral.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|
+
|<math>u</math>-substitution
 
|}
 
|}
  
Line 23: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|We proceed using <math>u</math>-substitution. Let <math>u=t^2</math>. Then, <math>du=2tdt</math>.
|-
 
|
 
 
|-
 
|-
|
+
|Since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|-
|
+
|Plugging in our values into the equation <math>u=t^2</math>, we get <math>u_1=(-1)^2=1</math> and <math>u_2=x^2</math>.
 
|}
 
|}
  
Line 35: Line 33:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
||So, we have
|-
 
|
 
 
|-
 
|-
|
+
|<math>f(x)=\int_{-1}^{x} \sin(t^2)2t~dt=\int_{1}^{x^2} \sin(u)du=\left.-\cos(u)\right|_{1}^{x^2}=-\cos(x^2)+\cos(1)</math>.
 
|}
 
|}
  
Line 47: Line 43:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|From part (a), we have <math>f(x)=-\cos(x^2)+\cos(1)</math>.
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 57: Line 49:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|If we take the derivative, we get <math>f'(x)=\sin(x^2)2x</math>.
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 111: Line 95:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>f(x)=-\cos(x^2)+\cos(1)</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>f'(x)=\sin(x^2)2x</math>
 
|-
 
|-
 
|'''(c)'''
 
|'''(c)'''

Revision as of 15:23, 2 February 2016

We would like to evaluate

.

a) Compute .

b) Find .

c) State the fundamental theorem of calculus.

d) Use the fundamental theorem of calculus to compute without first computing the integral.

Foundations:  
-substitution

Solution:

(a)

Step 1:  
We proceed using -substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Step 2:  
So, we have
.

(b)

Step 1:  
From part (a), we have .
Step 2:  
If we take the derivative, we get .

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)
(d)

Return to Sample Exam