Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 51: Line 51:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we add and subtract <math>x</math> from the numerator. So, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=\int\frac{2x^2+x-x+1}{2x^2+x}~dx=\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx=\int ~dx+\int\frac{1-x}{2x^2+x}~dx </math>.
 
|}
 
|}
  
Line 63: Line 59:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we need to use partial fraction decomposition for the second integral.
 +
|-
 +
|Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>.
 +
|-
 +
|Multiplying both sides of the last equation by <math>x(2x+1)</math>, we get <math>1-x=A(2x+1)+Bx</math>.
 +
|-
 +
|If we let <math>x=0</math>, the last equation becomes <math>1=A</math>.
 +
|-
 +
|If we let <math>x=-\frac{1}{2}</math>, then we get <math>\frac{3}{2}=-\frac{1}{2}B</math>. Thus, <math>B=-3</math>.
 +
|-
 +
|So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}</math>.
 
|}
 
|}
  
Line 69: Line 75:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|
+
|If we plug in the last equation from Step 2 into our final integral in Step 1, we have
 
|-
 
|-
|
+
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx</math>.
 
|}
 
|}
  
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|For the final remaining integral, we use <math>u</math>-substitution.
 +
|-
 +
|Let <math>u=2x+1</math>. Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx</math>.
 +
|-
 +
|Thus, our final integral becomes
 +
|-
 +
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx=x+\ln x+\int\frac{-3}{2u}~du=x+\ln x-\frac{3}{2}\ln u +C</math>.
 +
|-
 +
|Therefore, the final answer is
 +
|-
 +
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
 +
|}
 
'''(c)'''
 
'''(c)'''
  
Line 103: Line 124:
 
|'''(a)''' <math>xe^x-e^x-\cos(e^x)+C</math>
 
|'''(a)''' <math>xe^x-e^x-\cos(e^x)+C</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>x+\ln x-\frac{3}{2}\ln (2x+1) +C</math>
 
|-
 
|-
 
|'''(c)''' <math>-\cos x+\frac{\cos^3x}{3}+C</math>
 
|'''(c)''' <math>-\cos x+\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:07, 2 February 2016

Compute the following integrals.

a)

b)

c)


Foundations:  
Review -substitution
Integration by parts
Partial fraction decomposition
Trig identities

Solution:

(a)

Step 1:  
We first distribute to get .
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and . So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, . So, we have
.

(b)

Step 1:  
First, we add and subtract from the numerator. So, we have
.
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by , we get .
If we let , the last equation becomes .
If we let , then we get . Thus, .
So, in summation, we have .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
.
Step 4:  
For the final remaining integral, we use -substitution.
Let . Then, and .
Thus, our final integral becomes
.
Therefore, the final answer is

(c)

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, . So we have
.
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam