Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|
+
|Now, for the one remaining integral, we use <math>u</math>-substitution.
 
|-
 
|-
|
+
|Let <math>u=e^x</math>. Then, <math>du=e^xdx</math>. So, we have
 
|-
 
|-
|
+
|<math>\int e^x(x+\sin(e^x))~dx=xe^x-e^x+\int \sin(u)~du=xe^x-e^x-\cos(u)+C=xe^x-e^x-\cos(e^x)+C</math>.
 
|}
 
|}
  
Line 91: Line 91:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>xe^x-e^x-\cos(e^x)+C</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  

Revision as of 07:36, 2 February 2016

Compute the following integrals.

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x(x+\sin(e^x))~dx}

b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{2x^2+1}{2x^2+x}~dx}

c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^3x~dx}


Foundations:  
Review Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution and
Integration by parts

Solution:

(a)

Step 1:  
We first distribute to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x(x+\sin(e^x))~dx=\int e^xx~dx+\int e^x\sin(e^x)~dx} .
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x} . So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x(x+\sin(e^x))~dx=\bigg(xe^x-\int e^x~dx \bigg)+\int e^x\sin(e^x)~dx=xe^x-e^x+\int e^x\sin(e^x)~dx}
Step 2:  
Now, for the one remaining integral, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=e^x} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=e^xdx} . So, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x(x+\sin(e^x))~dx=xe^x-e^x+\int \sin(u)~du=xe^x-e^x-\cos(u)+C=xe^x-e^x-\cos(e^x)+C} .

(b)

Step 1:  
Step 2:  
Step 3:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xe^x-e^x-\cos(e^x)+C}
(b)
(c)

Return to Sample Exam