Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> We would like to evaluate
 
<span class="exam"> We would like to evaluate
 
:::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>.
 
:::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>.
::<span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2tdt</math>.
+
 
::<span class="exam">b) Find <math>f'(x)</math>.
+
<span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2tdt</math>.
::<span class="exam">c) State the fundamental theorem of calculus.
+
 
::<span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math> without first computing the integral.
+
<span class="exam">b) Find <math>f'(x)</math>.
 +
 
 +
<span class="exam">c) State the fundamental theorem of calculus.
 +
 
 +
<span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math> without first computing the integral.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 65: Line 69:
  
 
'''(c)'''
 
'''(c)'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
'''(d)'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 91: Line 115:
 
|'''(b)'''  
 
|'''(b)'''  
 
|-
 
|-
|'''(c)'''  
+
|'''(c)'''
 +
|-
 +
|'''(d)'''  
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 22:12, 1 February 2016

We would like to evaluate

.

a) Compute .

b) Find .

c) State the fundamental theorem of calculus.

d) Use the fundamental theorem of calculus to compute without first computing the integral.

Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Step 3:  

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)
(d)

Return to Sample Exam