Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> We would like to evaluate | <span class="exam"> We would like to evaluate | ||
:::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>. | :::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>. | ||
− | + | ||
− | + | <span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2tdt</math>. | |
− | + | ||
− | + | <span class="exam">b) Find <math>f'(x)</math>. | |
+ | |||
+ | <span class="exam">c) State the fundamental theorem of calculus. | ||
+ | |||
+ | <span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math> without first computing the integral. | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 65: | Line 69: | ||
'''(c)''' | '''(c)''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | '''(d)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 91: | Line 115: | ||
|'''(b)''' | |'''(b)''' | ||
|- | |- | ||
− | |'''(c)''' | + | |'''(c)''' |
+ | |- | ||
+ | |'''(d)''' | ||
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 22:12, 1 February 2016
We would like to evaluate
- .
a) Compute .
b) Find .
c) State the fundamental theorem of calculus.
d) Use the fundamental theorem of calculus to compute without first computing the integral.
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Step 3: |
---|
(c)
Step 1: |
---|
Step 2: |
---|
(d)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |
(c) |
(d) |