Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
Line 26: Line 26:
  
 
== 3. (Version I) Consider the following function: ==
 
== 3. (Version I) Consider the following function: ==
 
+
<br>
 
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
 
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
  
Line 34: Line 34:
  
 
== 3. (Version II) Repeat the above for the function: ==
 
== 3. (Version II) Repeat the above for the function: ==
 +
<br>
 +
<math>g(x)=\begin{cases}
 +
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\
 +
\frac{1}{4}x^{2}+C, & \quad\mbox{if }x<1.
 +
\end{cases}</math>
 +
 +
<span style="font-size:135%"><font face=Times Roman>(a) Find a value of &nbsp;<math style="vertical-align: -2.25%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> </font face=Times Roman> </span>
 +
 +
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
 +
 +
==4. Use implicit differentiation to find: ==
 +
<span style="font-size:135%"><font face=Times Roman> an equation for the tangent
 +
line to the function &nbsp;<math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math>  at the point <math style="vertical-align: -17%;">(1,1)</math>. </font face=Times Roman> </span>

Revision as of 21:59, 22 March 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


1. Find the following limits:

(a)  

(b)  

(c)  

(d)  

(e)  


2. Find the derivatives of the following functions:

(a)  

(b)  

(c)  
,br.

3. (Version I) Consider the following function:


(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Repeat the above for the function:


(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

4. Use implicit differentiation to find:

an equation for the tangent line to the function   at the point .