Difference between revisions of "009A Sample Final A"
Jump to navigation
Jump to search
Line 23: | Line 23: | ||
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math> | <span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math> | ||
− | <br> | + | <br>,br. |
− | == 3. Consider the following function: == | + | == 3. (Version I) Consider the following function: == |
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | <math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | ||
Line 32: | Line 32: | ||
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of <math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span> | <span style="font-size:135%"><font face=Times Roman>(b) With your choice of <math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span> | ||
+ | |||
+ | == 3. (Version II) Repeat the above for the function: == |
Revision as of 21:50, 22 March 2015
This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.
1. Find the following limits:
(a)
(b)
(c)
(d)
(e)
2. Find the derivatives of the following functions:
(a)
(b)
(c)
,br.
3. (Version I) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.