Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
Line 23: Line 23:
  
 
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
 
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
<br><br>
+
<br>,br.
  
== 3. Consider the following function: ==
+
== 3. (Version I) Consider the following function: ==
  
 
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
 
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
Line 32: Line 32:
  
 
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
 
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
 +
 +
== 3. (Version II) Repeat the above for the function: ==

Revision as of 21:50, 22 March 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


1. Find the following limits:

(a)  

(b)  

(c)  

(d)  

(e)  


2. Find the derivatives of the following functions:

(a)  

(b)  

(c)  
,br.

3. (Version I) Consider the following function:

(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Repeat the above for the function: