Difference between revisions of "009A Sample Final 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "page")
 
Line 1: Line 1:
page
+
'''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 +
<div class="noautonum">__TOC__</div>
 +
 
 +
== [[009A_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam">Compute
 +
::<span class="exam">a) <math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
 +
::<span class="exam">b) <math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
 +
 
 +
== [[009A_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam"> Find the sum of the following series:
 +
 
 +
::<span class="exam">a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math>
 +
::<span class="exam">b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
 +
 
 +
== [[009A_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam">Determine whether the following series converges or diverges.
 +
 
 +
::::::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
 +
 
 +
== [[009A_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 +
<span class="exam"> Find the interval of convergence of the following series.
 +
 
 +
::::::<math>\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
 +
 
 +
== [[009A_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 +
<span class="exam"> Let
 +
 
 +
::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math>
 +
 
 +
::<span class="exam">a) Find the radius of convergence of the power series.
 +
::<span class="exam">b) Determine the interval of convergence of the power series.
 +
::<span class="exam">c) Obtain an explicit formula for the function <math>f(x)</math>.
 +
 
 +
== [[009A_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 +
<span class="exam"> Find the Taylor polynomial of degree 4 of <math>f(x)=\cos^2x</math> at <math>a=\frac{\pi}{4}</math>.
 +
 
 +
== [[009A_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 +
 
 +
A curve is given in polar coordinates by
 +
::::::<math>r=1+\sin\theta</math>
 +
 
 +
::<span class="exam">a) Sketch the curve.
 +
::<span class="exam">b) Compute <math>y'=\frac{dy}{dx}</math>.
 +
::<span class="exam">c) Compute <math>y''=\frac{d^2y}{dx^2}</math>.
 +
 
 +
== [[009A_Sample Final 1,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
 +
 
 +
A curve is given in polar coordinates by
 +
::::::<math>r=1+\sin 2\theta</math>
 +
::::::<math>0\leq \theta \leq 2\pi</math>
 +
 
 +
::<span class="exam">a) Sketch the curve.
 +
::<span class="exam">b) Find the area enclosed by the curve.
 +
 
 +
== [[009A_Sample Final 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 +
 
 +
A curve is given in polar coordinates by
 +
::::::<math>r=\theta</math>
 +
::::::<math>0\leq \theta \leq 2\pi</math>
 +
 
 +
Find the length of the curve.
 +
 
 +
== [[009A_Sample Final 1,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 +
 
 +
A curve is given in polar parametrically by
 +
::::::<math>x(t)=3\sin t</math>
 +
::::::<math>y(t)=4\cos t</math>
 +
::::::<math>0\leq t \leq 2\pi</math>
 +
 
 +
::<span class="exam">a) Sketch the curve.
 +
::<span class="exam">b) Compute the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math>.

Revision as of 17:35, 1 February 2016

This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar. Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Compute

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}}
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}}

 Problem 2 

Find the sum of the following series:

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-2)^ne^{-n}}
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)}

 Problem 3 

Determine whether the following series converges or diverges.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}

 Problem 4 

Find the interval of convergence of the following series.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}}

 Problem 5 

Let

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sum_{n=1}^{\infty} nx^n}
a) Find the radius of convergence of the power series.
b) Determine the interval of convergence of the power series.
c) Obtain an explicit formula for the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .

 Problem 6 

Find the Taylor polynomial of degree 4 of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\cos^2x} at .

 Problem 7 

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin\theta}
a) Sketch the curve.
b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}} .
c) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=\frac{d^2y}{dx^2}} .

 Problem 8 

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin 2\theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}
a) Sketch the curve.
b) Find the area enclosed by the curve.

 Problem 9 

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}

Find the length of the curve.

 Problem 10 

A curve is given in polar parametrically by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=3\sin t}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t)=4\cos t}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq t \leq 2\pi}
a) Sketch the curve.
b) Compute the equation of the tangent line at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0=\frac{\pi}{4}} .