Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
== 1. Find the following limits: ==
 
== 1. Find the following limits: ==
  
<span style="font-size:130%"><font face=Times Roman>(a)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:130%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:130%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:130%"><font face=Times Roman>(d)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(d)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:130%"><font face=Times Roman>(e)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(e)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
  
  
 
== 2. Find the derivatives of the following functions: ==
 
== 2. Find the derivatives of the following functions: ==
  
<span style="font-size:130%"><font face=Times Roman>(a)</font face=Times Roman> </span>  &nbsp; <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span>  &nbsp; <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:130%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>g(x)=\pi+2\cos(\sqrt{x-2}).</math>
+
<span style="font-size:135%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>g(x)=\pi+2\cos(\sqrt{x-2}).</math>
 
<br><br>
 
<br><br>
  
<span style="font-size:130%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
+
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
 
<br><br>
 
<br><br>
  
Line 29: Line 29:
 
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
 
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
  
<span style="font-size:130%"><font face=Times Roman>(a) Find a value of &nbsp;<math style="vertical-align: -2.25%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> </font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>(a) Find a value of &nbsp;<math style="vertical-align: -2.25%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> </font face=Times Roman> </span>
 +
 
 +
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>

Revision as of 21:48, 22 March 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


1. Find the following limits:

(a)  

(b)  

(c)  

(d)  

(e)  


2. Find the derivatives of the following functions:

(a)  

(b)  

(c)  

3. Consider the following function:

(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.