Difference between revisions of "009A Sample Final A"
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
== 1. Find the following limits: == | == 1. Find the following limits: == | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span> <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math> |
<br><br> | <br><br> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(b)</font face=Times Roman> </span> <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math> |
<br><br> | <br><br> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math> |
<br><br> | <br><br> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(d)</font face=Times Roman> </span> <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math> |
<br><br> | <br><br> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(e)</font face=Times Roman> </span> <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math> |
== 2. Find the derivatives of the following functions: == | == 2. Find the derivatives of the following functions: == | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span> <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math> |
<br><br> | <br><br> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(b)</font face=Times Roman> </span> <math>g(x)=\pi+2\cos(\sqrt{x-2}).</math> |
<br><br> | <br><br> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math> |
<br><br> | <br><br> | ||
Line 29: | Line 29: | ||
<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | <math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | ||
− | <span style="font-size: | + | <span style="font-size:135%"><font face=Times Roman>(a) Find a value of <math style="vertical-align: -2.25%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> </font face=Times Roman> </span> |
+ | |||
+ | <span style="font-size:135%"><font face=Times Roman>(b) With your choice of <math style="vertical-align: -2.25%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span> |
Revision as of 21:48, 22 March 2015
This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.
1. Find the following limits:
(a)
(b)
(c)
(d)
(e)
2. Find the derivatives of the following functions:
(a)
(b)
(c)
3. Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.