Difference between revisions of "009C Sample Final 1"

From Grad Wiki
Jump to navigation Jump to search
Line 33: Line 33:
  
 
== [[009C_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[009C_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Evaluate the improper integrals:
+
<span class="exam"> Find the Taylor polynomial of degree 4 of <math>f(x)=\cos^2x</math> at <math>a=\frac{\pi}{4}</math>.
 
 
::<span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math>
 
::<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
 
  
 
== [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 
== [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==

Revision as of 18:25, 1 February 2016

This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar. Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Compute

a)
b)

 Problem 2 

Find the sum of the following series:

a)
b)

 Problem 3 

Determine whether the following series converges or diverges.

 Problem 4 

Find the interval of convergence of the following series.

 Problem 5 

Let

a) Find the radius of convergence of the power series.
b) Determine the interval of convergence of the power series.
c) Obtain an explicit formula for the function .

 Problem 6 

Find the Taylor polynomial of degree 4 of at .

 Problem 7 

a) Find the length of the curve
.
b) The curve
is rotated about the -axis. Find the area of the resulting surface.