Difference between revisions of "009B Sample Midterm 1, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 1: | Line 1: | ||
<span class="exam">Let <math>f(x)=1-x^2</math>. | <span class="exam">Let <math>f(x)=1-x^2</math>. | ||
− | ::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes. | + | ::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. |
− | ::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes. | + | ::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. |
− | ::<span class="exam">c) Express <math>\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | + | ::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. |
Line 18: | Line 18: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since our interval is <math>[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is |
|- | |- | ||
− | |<math>1(f(0)+f(1)+f(2))</math>. | + | | <math style="vertical-align: 0px">1(f(0)+f(1)+f(2))</math>. |
|- | |- | ||
| | | | ||
Line 30: | Line 30: | ||
|Thus, the left-hand Riemann sum is | |Thus, the left-hand Riemann sum is | ||
|- | |- | ||
− | |<math>1(f(0)+f(1)+f(2))=1+0+-3=-2</math>. | + | | <math style="vertical-align: -4px">1(f(0)+f(1)+f(2))=1+0+-3=-2</math>. |
|} | |} | ||
Line 37: | Line 37: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since our interval is <math>[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is |
|- | |- | ||
− | |<math>1(f(1)+f(2)+f(3))</math>. | + | | <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))</math>. |
|- | |- | ||
| | | | ||
Line 49: | Line 49: | ||
|Thus, the right-hand Riemann sum is | |Thus, the right-hand Riemann sum is | ||
|- | |- | ||
− | |<math>1(f(1)+f(2)+f(3))=0+-3+-8=-11</math>. | + | | <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))=0+-3+-8=-11</math>. |
|} | |} | ||
Line 56: | Line 56: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math>n</math> be the number of rectangles used in the right-hand Riemann sum for <math>f(x)=1-x^2</math>. | + | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2</math>. |
|- | |- | ||
− | |The width of each rectangle is <math>\Delta x=\frac{3-0}{n}=\frac{3}{n}</math>. | + | |The width of each rectangle is <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}</math>. |
|- | |- | ||
| | | | ||
Line 70: | Line 70: | ||
|So, the right-hand Riemann sum is | |So, the right-hand Riemann sum is | ||
|- | |- | ||
− | |<math>\Delta x \bigg(f\bigg(\frac{3}{n}\bigg)+f\bigg(2\frac{3}{n}\bigg)+f\bigg(3\frac{3}{n}\bigg)+\ldots +f(3)\bigg)</math>. | + | | <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg)</math>. |
|- | |- | ||
− | | | + | |Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. |
|- | |- | ||
− | | | + | |Thus, the area of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>. |
|} | |} | ||
Line 80: | Line 80: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>-2</math> | + | |'''(a)''' <math style="vertical-align: -2px">-2</math> |
|- | |- | ||
− | |'''(b)''' <math>-11</math> | + | |'''(b)''' <math style="vertical-align: -2px">-11</math> |
|- | |- | ||
− | |'''(c)''' <math>\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math> | + | |'''(c)''' <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 23:23, 31 January 2016
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Foundations: |
---|
Link to Riemann sums page |
Solution:
(a)
Step 1: |
---|
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is |
. |
Step 2: |
---|
Thus, the left-hand Riemann sum is |
. |
(b)
Step 1: |
---|
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is |
. |
Step 2: |
---|
Thus, the right-hand Riemann sum is |
. |
(c)
Step 1: |
---|
Let be the number of rectangles used in the right-hand Riemann sum for . |
The width of each rectangle is . |
Step 2: |
---|
So, the right-hand Riemann sum is |
. |
Finally, we let go to infinity to get a limit. |
Thus, the area of is equal to . |
Final Answer: |
---|
(a) |
(b) |
(c) |