Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
|Now, we need to use integration by parts again. Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x</math>.
 
|Now, we need to use integration by parts again. Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x</math>.
 
|-
 
|-
|Therefore, we have
+
|Building on the previous step, we have
 
|-
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -15px">\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C</math>.
 
| &nbsp;&nbsp; <math style="vertical-align: -15px">\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C</math>.

Revision as of 22:47, 31 January 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Review integration by parts.

Solution:

(a)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
   .
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
Building on the previous step, we have
   .

(b)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
   .
Step 2:  
Now, we evaluate to get
   .
Final Answer:  
(a)  
(b)  

Return to Sample Exam