Difference between revisions of "009B Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
|Now, we need to use integration by parts again. Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x</math>. | |Now, we need to use integration by parts again. Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x</math>. | ||
|- | |- | ||
− | | | + | |Building on the previous step, we have |
|- | |- | ||
| <math style="vertical-align: -15px">\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C</math>. | | <math style="vertical-align: -15px">\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C</math>. |
Revision as of 22:47, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review integration by parts. |
Solution:
(a)
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
Therefore, we have |
. |
Step 2: |
---|
Now, we need to use integration by parts again. Let and . Then, and . |
Building on the previous step, we have |
. |
(b)
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
Therefore, we have |
. |
Step 2: |
---|
Now, we evaluate to get |
. |
Final Answer: |
---|
(a) |
(b) |