Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| Review u substitution
+
| Review <math style="vertical-align: 0px">u</math>-substitution.
 
|}
 
|}
  
Line 17: Line 17:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>.
+
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3</math>. Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx</math>.
 
|-
 
|-
|Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}~du</math>.
+
|Therefore, the integral becomes&thinsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du</math>.
 
|}
 
|}
  
Line 27: Line 27:
 
|We now have:
 
|We now have:
 
|-
 
|-
|<math>\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
+
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
 
|}
 
|}
  

Revision as of 19:33, 31 January 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Review -substitution.

Solution:

(a)

Step 1:  
We need to use -substitution. Let . Then, and  .
Therefore, the integral becomes  .
Step 2:  
We now have:
    .

(b)

Step 1:  
Again, we need to use substitution. Let . Then, . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes .
Step 2:  
We now have:
    .
Final Answer:  
(a)  
(b)  

Return to Sample Exam