Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | Review u substitution | + | | Review <math style="vertical-align: 0px">u</math>-substitution. |
|} | |} | ||
Line 17: | Line 17: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>. | + | |We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3</math>. Then, <math style="vertical-align: 0px">du=3x^2dx</math> and  <math style="vertical-align: -13px">\frac{du}{3}=x^2dx</math>. |
|- | |- | ||
− | |Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}~du</math>. | + | |Therefore, the integral becomes  <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du</math>. |
|} | |} | ||
Line 27: | Line 27: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | |<math>\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>. | + | | <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>. |
|} | |} | ||
Revision as of 19:33, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review -substitution. |
Solution:
(a)
Step 1: |
---|
We need to use -substitution. Let . Then, and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
(b)
Step 1: |
---|
Again, we need to use substitution. Let . Then, . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
Final Answer: |
---|
(a) |
(b) |