Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 34: | Line 34: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Again, we need to use substitution. Let <math>u=\sin(x)</math>. Then, <math>du=\cos(x)dx</math>. Also, we need to change the bounds of integration. | + | |Again, we need to use substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math>. Then, <math style="vertical-align: -5px">du=\cos(x)dx</math>. Also, we need to change the bounds of integration. |
|- | |- | ||
− | |Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>. | + | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math>, we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>. |
|- | |- | ||
− | |Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>. | + | |Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>. |
|- | |- | ||
| | | | ||
Line 48: | Line 48: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | |<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>. | + | | <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>. |
|- | |- | ||
| | | | ||
Line 58: | Line 58: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> | + | |'''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> |
|- | |- | ||
− | |'''(b)''' <math>-1+\sqrt{2}</math> | + | |'''(b)''' <math>-1+\sqrt{2}</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 19:10, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review u substitution |
Solution:
(a)
Step 1: |
---|
We need to use substitution. Let . Then, and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
(b)
Step 1: |
---|
Again, we need to use substitution. Let . Then, . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
Final Answer: |
---|
(a) |
(b) |