Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Again, we need to use substitution. Let <math>u=\sin(x)</math>. Then, <math>du=\cos(x)dx</math>. Also, we need to change the bounds of integration.
+
|Again, we need to use substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math>. Then, <math style="vertical-align: -5px">du=\cos(x)dx</math>. Also, we need to change the bounds of integration.
 
|-
 
|-
|Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math>, we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
 
|-
 
|-
|Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>.
+
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>.
 
|-
 
|-
 
|
 
|
Line 48: Line 48:
 
|We now have:  
 
|We now have:  
 
|-
 
|-
|<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
+
|&nbsp; &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
 
|-
 
|-
 
|
 
|
Line 58: Line 58:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>
+
|'''(a)''' &nbsp; <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>
 
|-
 
|-
|'''(b)''' <math>-1+\sqrt{2}</math>
+
|'''(b)''' &nbsp; <math>-1+\sqrt{2}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:10, 31 January 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Review u substitution

Solution:

(a)

Step 1:  
We need to use substitution. Let . Then, and .
Therefore, the integral becomes .
Step 2:  
We now have:
.

(b)

Step 1:  
Again, we need to use substitution. Let . Then, . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes .
Step 2:  
We now have:
    .
Final Answer:  
(a)  
(b)  

Return to Sample Exam