Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Compute the following integrals:
 
<span class="exam"> Compute the following integrals:
  
::<span class="exam">a) <math>\int x^2\sin (x^3) dx</math>  
+
::<span class="exam">a) <math>\int x^2\sin (x^3) ~dx</math>  
::<span class="exam">b) <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)dx</math>
+
::<span class="exam">b) <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx</math>
  
  
Line 21: Line 21:
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
|<math>\int x^2\sin (x^3) dx=\int \frac{\sin(u)}{3}du</math>
+
|<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du</math>
 
|}
 
|}
  
Line 29: Line 29:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
|<math>\int x^2\sin (x^3) dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C</math>
+
|<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C</math>
 
|}
 
|}
  
Line 48: Line 48:
 
|So, we get  
 
|So, we get  
 
|-
 
|-
|<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0</math>
+
|<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0</math>
 
|}
 
|}
  

Revision as of 15:31, 31 January 2016

Compute the following integrals:

a)
b)


Foundations:  
u substitution

Solution:

(a)

Step 1:  
We proceed using u substitution. Let . Then, .
Therefore, we have
Step 2:  
We integrate to get

(b)

Step 1:  
Again, we proceed using u substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
We have and .
Step 2:  
So, we get
Final Answer:  
(a)
(b)

Return to Sample Exam