Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">State the fundamental theorem of calculus, and use this theorem to find the derivative of  
 
<span class="exam">State the fundamental theorem of calculus, and use this theorem to find the derivative of  
  
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}du</math>
+
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du</math>
  
  
Line 18: Line 18:
 
|'''The Fundamental Theorem of Calculus, Part 1'''  
 
|'''The Fundamental Theorem of Calculus, Part 1'''  
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
Line 26: Line 26:
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
+
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|}
 
|}
  
Line 32: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|First, we have <math>F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}du</math>.
+
|First, we have <math>F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du</math>.
 
|-
 
|-
|Now, let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_5^x \frac{1}{1+u^{10}}du</math>  
+
|Now, let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_5^x \frac{1}{1+u^{10}}~du</math>  
 
|-
 
|-
 
|So, <math>F(x)=-G(g(x))</math>.
 
|So, <math>F(x)=-G(g(x))</math>.
 
|-
 
|-
|Hence, <math>F'(x)=-G'(g(x))g'(x)</math>.
+
|Hence, <math>F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule.
 
|}
 
|}
  
Line 58: Line 58:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
Line 66: Line 66:
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
+
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|-
 
|-
 
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:28, 31 January 2016

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Foundations:  
?

Solution:

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,
Step 2:  
First, we have .
Now, let and
So, .
Hence, by the Chain Rule.
Step 3:  
Now, .
By the Fundamental Theorem of Calculus, .
Hence,
Final Answer:  
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,

Return to Sample Exam