Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 17: | Line 17: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we write <math>\int \tan^4(x)dx=\int \tan^2(x) \tan^2(x)dx</math>. | + | |First, we write <math>\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx</math>. |
|- | |- | ||
|Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>. | |Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>. | ||
Line 23: | Line 23: | ||
|Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get | |Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get | ||
|- | |- | ||
− | |<math>\int \tan^4(x)dx=\int \tan^2(x) (\sec^2(x)-1)dx=\int \tan^2(x)\sec^2(x)dx-\int \tan^2(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math> | + | |<math>\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math> |
|- | |- | ||
− | |using the identity again on the last equality | + | |using the identity again on the last equality. |
|} | |} | ||
Line 31: | Line 31: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |So, we have <math>\int \tan^4(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math>. | + | |So, we have <math>\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>. |
|- | |- | ||
|For the first integral, we need to use substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>. | |For the first integral, we need to use substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>. | ||
Line 37: | Line 37: | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | |<math>\int \tan^4(x)dx=\int u^ | + | |<math>\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx</math>. |
|} | |} | ||
Line 45: | Line 45: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | | <math>\int \tan^4(x)dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> | + | | <math>\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
|} | |} | ||
Revision as of 15:26, 31 January 2016
Evaluate the integral:
Foundations: |
---|
Trig identity |
U substitution |
Solution:
Step 1: |
---|
First, we write . |
Using the trig identity , we have . |
Plugging in the last identity into one of the , we get |
using the identity again on the last equality. |
Step 2: |
---|
So, we have . |
For the first integral, we need to use substitution. Let . Then, . |
So, we have |
. |
Step 3: |
---|
We integrate to get |
Final Answer: |
---|