Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Evaluate | <span class="exam">Evaluate | ||
− | ::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt</math> | + | ::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> |
− | ::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx</math> | + | ::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> |
Line 21: | Line 21: | ||
|We multiply the product inside the integral to get | |We multiply the product inside the integral to get | ||
|- | |- | ||
− | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)dt=\int_1^2 (8t^3+2-15t^{-3})dt</math> | + | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math> |
|} | |} | ||
Line 29: | Line 29: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>. | + | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>. |
|- | |- | ||
|We now evaluate to get | |We now evaluate to get | ||
|- | |- | ||
− | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> | + | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> |
|} | |} | ||
Line 44: | Line 44: | ||
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>. | |Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>. | ||
|- | |- | ||
− | |Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}du</math> | + | |Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}~du</math> |
|- | |- | ||
| | | | ||
Line 54: | Line 54: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx=\frac{1}{4}\int_4^{28}\sqrt{u}du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math> | + | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx=\frac{28\sqrt{7}-4}{3}</math> | + | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math> |
|} | |} | ||
Revision as of 15:22, 31 January 2016
Evaluate
- a)
- b)
Foundations: |
---|
Integrating polynomials |
U substitution |
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
(b)
Step 1: |
---|
We use substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
So, we have |
Final Answer: |
---|
(a) |
(b) |