Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate
 
<span class="exam">Evaluate
  
::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt</math>  
+
::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx</math>
+
::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
  
  
Line 21: Line 21:
 
|We multiply the product inside the integral to get  
 
|We multiply the product inside the integral to get  
 
|-
 
|-
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)dt=\int_1^2 (8t^3+2-15t^{-3})dt</math>   
+
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>   
 
|}
 
|}
  
Line 29: Line 29:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.
+
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.
 
|-
 
|-
 
|We now evaluate to get
 
|We now evaluate to get
 
|-
 
|-
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>
+
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>
 
|}
 
|}
  
Line 44: Line 44:
 
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>.
 
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>.
 
|-
 
|-
|Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}du</math>
+
|Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>
 
|-
 
|-
 
|
 
|
Line 54: Line 54:
 
|We now have:
 
|We now have:
 
|-
 
|-
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx=\frac{1}{4}\int_4^{28}\sqrt{u}du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>
+
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>
 
|-
 
|-
 
|So, we have  
 
|So, we have  
 
|-
 
|-
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx=\frac{28\sqrt{7}-4}{3}</math>
+
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>
 
|}
 
|}
  

Revision as of 15:22, 31 January 2016

Evaluate

a)
b)


Foundations:  
Integrating polynomials
U substitution

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
Step 2:  
We integrate to get
.
We now evaluate to get

(b)

Step 1:  
We use substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes
Step 2:  
We now have:
So, we have
Final Answer:  
(a)
(b)

Return to Sample Exam