Difference between revisions of "009B Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
<span class="exam"> Evaluate
 
<span class="exam"> Evaluate
  
::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt</math>  
+
::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx</math>
+
::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
  
 
== [[009B_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==

Revision as of 15:20, 31 January 2016

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the

 boxed problem numbers  to go to a solution.

 Problem 1 

Consider the region bounded by and the -axis.

a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and indicate your rectangles overestimate or underestimate the area of .
b) Find an expression for the area of the region as a limit. Do not evaluate the limit.

 Problem 2 

This problem has three parts:

a) State the fundamental theorem of calculus.
b) Compute
c) Evaluate

 Problem 3 

Evaluate

a)
b)

 Problem 4 

Evaluate the integral:

 Problem 5 

Evaluate the integral: