Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Let <math>f(x)=1-x^2</math>.
 
<span class="exam">Let <math>f(x)=1-x^2</math>.
  
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math>\int_0^3 f(x)dx</math> with <math>n=3</math> boxes.
+
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes.
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math>\int_0^3 f(x)dx</math> with <math>n=3</math> boxes.
+
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes.
::<span class="exam">c) Express <math>\int_0^3 f(x)dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
::<span class="exam">c) Express <math>\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
  
  
Line 74: Line 74:
 
|Now, we let <math>n</math> go to infinity to get a limit.   
 
|Now, we let <math>n</math> go to infinity to get a limit.   
 
|-
 
|-
|So, the area of <math>S</math> is equal to <math>\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>.
+
|So, the area of <math>\int_0^3 f(x)~dx</math> is equal to <math>\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>.
 
|}
 
|}
  

Revision as of 15:15, 31 January 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
Link to Riemann sums page

Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is
.
Step 2:  
Thus, the left-hand Riemann sum is
.

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
.
Step 2:  
Thus, the right-hand Riemann sum is
.

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the right-hand Riemann sum is
.
Now, we let go to infinity to get a limit.
So, the area of is equal to .
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam