Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate the indefinite and definite integrals.  
 
<span class="exam">Evaluate the indefinite and definite integrals.  
  
::<span class="exam">a) <math>\int x^2 e^xdx</math>
+
::<span class="exam">a) <math>\int x^2 e^x~dx</math>
 
::<span class="exam">b) <math>\int_{1}^{e} x^3\ln x~dx</math>
 
::<span class="exam">b) <math>\int_{1}^{e} x^3\ln x~dx</math>
  
Line 21: Line 21:
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
|<math>\int x^2 e^xdx=x^2e^x-\int 2xdx</math>
+
|<math>\int x^2 e^x~dx=x^2e^x-\int 2x~dx</math>
 
|}
 
|}
  
Line 31: Line 31:
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
|<math>\int x^2 e^xdx=x^2e^x-\bigg(2xe^x-\int 2e^xdx\bigg)=x^2e^x-2xe^x+2e^x+C</math>
+
|<math>\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C</math>
 
|}
 
|}
  
Line 42: Line 42:
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
|<math>\int_{1}^{e} x^3\ln x~dx=\left.\ln x \frac{x^4}{4}\right|_{1}^{e}-\int_1^e \frac{x^3}{4}dx=\left.\ln x \frac{x^4}{4}-\frac{x^4}{16}\right|_{1}^{e}</math>
+
|<math>\int_{1}^{e} x^3\ln x~dx=\left.\ln x \frac{x^4}{4}\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx=\left.\ln x \frac{x^4}{4}-\frac{x^4}{16}\right|_{1}^{e}</math>
 
|-
 
|-
 
|
 
|

Revision as of 15:11, 31 January 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
Therefore, we have

(b)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
Step 2:  
Now, we evaluate to get
Final Answer:  
(a)
(b)

Return to Sample Exam