Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate the indefinite and definite integrals.
 
<span class="exam">Evaluate the indefinite and definite integrals.
  
::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}dx</math>
+
::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}~dx</math>
::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}dx</math>
+
::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
  
  
Line 19: Line 19:
 
|We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>.
 
|We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>.
 
|-
 
|-
|Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}du</math>.
+
|Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}~du</math>.
 
|}
 
|}
  
Line 27: Line 27:
 
|We now have:
 
|We now have:
 
|-
 
|-
|<math>\int x^2\sqrt{1+x^3}dx=\frac{1}{3}\int \sqrt{u}du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
+
|<math>\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
 
|}
 
|}
  
Line 38: Line 38:
 
|Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
 
|Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
 
|-
 
|-
|Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}du</math>.
+
|Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>.
 
|-
 
|-
 
|
 
|
Line 48: Line 48:
 
|We now have:  
 
|We now have:  
 
|-
 
|-
|<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
+
|<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
 
|-
 
|-
 
|
 
|

Revision as of 15:05, 31 January 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Review u substitution

Solution:

(a)

Step 1:  
We need to use substitution. Let . Then, and .
Therefore, the integral becomes .
Step 2:  
We now have:
.

(b)

Step 1:  
Again, we need to use substitution. Let . Then, . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes .
Step 2:  
We now have:
.
Final Answer:  
(a)
(b)

Return to Sample Exam