Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Evaluate the indefinite and definite integrals. | <span class="exam">Evaluate the indefinite and definite integrals. | ||
− | ::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}dx</math> | + | ::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}~dx</math> |
− | ::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}dx</math> | + | ::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math> |
Line 19: | Line 19: | ||
|We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>. | |We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>. | ||
|- | |- | ||
− | |Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}du</math>. | + | |Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}~du</math>. |
|} | |} | ||
Line 27: | Line 27: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | |<math>\int x^2\sqrt{1+x^3}dx=\frac{1}{3}\int \sqrt{u}du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>. | + | |<math>\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>. |
|} | |} | ||
Line 38: | Line 38: | ||
|Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>. | |Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>. | ||
|- | |- | ||
− | |Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}du</math>. | + | |Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math>. |
|- | |- | ||
| | | | ||
Line 48: | Line 48: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | |<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>. | + | |<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>. |
|- | |- | ||
| | | |
Revision as of 15:05, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review u substitution |
Solution:
(a)
Step 1: |
---|
We need to use substitution. Let . Then, and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
(b)
Step 1: |
---|
Again, we need to use substitution. Let . Then, . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
Final Answer: |
---|
(a) |
(b) |