Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|1)
+
|Review u substitution
 
|-
 
|-
|2)  
+
|Trig identities
 +
|}
 +
 
 +
'''Solution:'''
 +
 
 +
'''(a)'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1:  
 
|-
 
|-
 +
|We start by writing <math>\int \tan^3xdx=\int \tan^2x\tan x dx</math>.
 
|-
 
|-
|Answers:
+
|Since <math>\tan^2x=\sec^2x-1</math>, we have <math>\int \tan^3xdx=\int (\sec^2x-1)\tan x dx=\int \sec^2\tan xdx-\int \tan xdx</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|1)
+
|Now, we need to use u substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have
 
|-
 
|-
|2)
+
|<math>\int \tan^3xdx=\int udu-\int \tan xdx=\frac{u^2}{2}-\int \tan xdx=\frac{\tan^2x}{2}-\int \tan xdx</math>.
 
|}
 
|}
  
'''Solution:'''
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|For the remaining integral, we need to use u substitution. First, we write <math>\int \tan^3xdx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}dx</math>.
 +
|-
 +
|Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get
 +
|-
 +
|<math>\int \tan^3xdx=\frac{\tan^2x}{2}+\int \frac{1}{u}dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math>.
 +
|}
 +
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
Line 27: Line 48:
 
|
 
|
 
|-
 
|-
|  
+
|
 
|-
 
|-
 
|
 
|
Line 37: Line 58:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|  
|-
 
|
 
 
|-
 
|-
 
|
 
|
Line 49: Line 68:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|-
 
|-
|  
+
|'''(b)'''
|}
+
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:56, 31 January 2016

Evaluate the indefinite and definite integrals.


a)
b)


Foundations:  
Review u substitution
Trig identities

Solution:

(a)

Step 1:  
We start by writing .
Since , we have .
Step 2:  
Now, we need to use u substitution for the first integral. Let . Then, . So, we have
.
Step 3:  
For the remaining integral, we need to use u substitution. First, we write .
Now, we let . Then, . So, we get
.

(b)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)

Return to Sample Exam