Difference between revisions of "009B Sample Midterm 3, Problem 5"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 9: | Line 9: | ||
| !Foundations:     | !Foundations:     | ||
| |- | |- | ||
| − | | | + | |Review u substitution  | 
| |- | |- | ||
| − | | | + | |Trig identities | 
| + | |} | ||
| + | |||
| + | '''Solution:''' | ||
| + | |||
| + | '''(a)''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 1:    | ||
| |- | |- | ||
| + | |We start by writing <math>\int \tan^3xdx=\int \tan^2x\tan x dx</math>.  | ||
| |- | |- | ||
| − | | | + | |Since <math>\tan^2x=\sec^2x-1</math>, we have <math>\int \tan^3xdx=\int (\sec^2x-1)\tan x dx=\int \sec^2\tan xdx-\int \tan xdx</math>.  | 
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2:   | ||
| |- | |- | ||
| − | | | + | |Now, we need to use u substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have | 
| |- | |- | ||
| − | |2 | + | |<math>\int \tan^3xdx=\int udu-\int \tan xdx=\frac{u^2}{2}-\int \tan xdx=\frac{\tan^2x}{2}-\int \tan xdx</math>. | 
| |} | |} | ||
| − | ''' | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | 
| + | !Step 3:   | ||
| + | |- | ||
| + | |For the remaining integral, we need to use u substitution. First, we write <math>\int \tan^3xdx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}dx</math>. | ||
| + | |- | ||
| + | |Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get  | ||
| + | |- | ||
| + | |<math>\int \tan^3xdx=\frac{\tan^2x}{2}+\int \frac{1}{u}dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math>. | ||
| + | |} | ||
| + | '''(b)''' | ||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| !Step 1:     | !Step 1:     | ||
| Line 27: | Line 48: | ||
| | | | | ||
| |- | |- | ||
| − | |   | + | | | 
| |- | |- | ||
| | | | | ||
| Line 37: | Line 58: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | + | |   | |
| − | |||
| − | | | ||
| |- | |- | ||
| | | | | ||
| Line 49: | Line 68: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | | | + | |'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math> | 
| |- | |- | ||
| − | |   | + | |'''(b)'''  | 
| − | + | ||
| [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:56, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
 
| Foundations: | 
|---|
| Review u substitution | 
| Trig identities | 
Solution:
(a)
| Step 1: | 
|---|
| We start by writing . | 
| Since , we have . | 
| Step 2: | 
|---|
| Now, we need to use u substitution for the first integral. Let . Then, . So, we have | 
| . | 
| Step 3: | 
|---|
| For the remaining integral, we need to use u substitution. First, we write . | 
| Now, we let . Then, . So, we get | 
| . | 
(b)
| Step 1: | 
|---|
| Step 2: | 
|---|
| Final Answer: | 
|---|
| (a) | 
| (b) |