Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We proceed using integration by parts. Let <math>u=\ln x</math> and <math>dv=x^3dx</math>. Then, <math>du=\frac{1}{x}dx</math> and <math>v=\frac{x^4}{4}</math>.
 
|-
 
|-
|
+
|Therefore, we have
 
|-
 
|-
|
+
|<math>\int_{1}^{e} x^3\ln x~dx=\left.\ln x \frac{x^4}{4}\right|_{1}^{e}-\int_1^e \frac{x^3}{4}dx=\left.\ln x \frac{x^4}{4}-\frac{x^4}{16}\right|_{1}^{e}</math>
 
|-
 
|-
 
|
 
|
Line 50: Line 50:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we evaluate to get
 
|-
 
|-
|
+
|<math>\int_{1}^{e} x^3\ln x~dx=\bigg(\ln e \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg(\ln 1 \frac{1^4}{4}-\frac{1^4}{16}\bigg)=\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}=\frac{3e^4+1}{16}</math>
 
|-
 
|-
 
|
 
|
Line 64: Line 64:
 
|'''(a)''' <math>x^2e^x-2xe^x+2e^x+C</math>
 
|'''(a)''' <math>x^2e^x-2xe^x+2e^x+C</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>\frac{3e^4+1}{16}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:26, 31 January 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
Therefore, we have

(b)

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we have
Step 2:  
Now, we evaluate to get
Final Answer:  
(a)
(b)

Return to Sample Exam