Difference between revisions of "009B Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We proceed using integration by parts. Let <math>u=\sin(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=2\cos(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>.
 +
|-
 +
|So, we get
 +
|-
 +
|<math>\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)dx</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|Now, we need to use integration by parts again. Let <math>u=\cos(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=-2\sin(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>.
 
|-
 
|-
|  
+
|So, we get
 
|-
 
|-
|
+
|<math>\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)dx</math>.
 
|-
 
|-
 
|
 
|
Line 24: Line 34:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 +
|-
 +
|Notice that the integral on the right of the last equation is the same integral that we had at the beginning.
 +
|-
 +
|So, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|-
|
+
|<math>2\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math>.
 
|-
 
|-
|
+
|Now, we divide both sides by 2 to get
 
|-
 
|-
|
+
|<math>\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math>.
 
|-
 
|-
|
+
|Thus, the final answer is <math>\int e^{-2x}\sin (2x)dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>
 
|}
 
|}
  
Line 38: Line 52:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|<math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>
|-
 
|
 
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:41, 31 January 2016

Evaluate the integral:


Foundations:  
Review integration by parts

Solution:

Step 1:  
We proceed using integration by parts. Let and . Then, and .
So, we get
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
So, we get
.
Step 3:  
Notice that the integral on the right of the last equation is the same integral that we had at the beginning.
So, if we add the integral on the right to the other side of the equation, we get
.
Now, we divide both sides by 2 to get
.
Thus, the final answer is
Final Answer:  

Return to Sample Exam