Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |Integrating polynomials |
|- | |- | ||
− | | | + | |U substitution |
+ | |} | ||
+ | |||
+ | '''Solution:''' | ||
+ | |||
+ | '''(a)''' | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
|- | |- | ||
+ | |We multiply the product inside the integral to get | ||
|- | |- | ||
− | | | + | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)dt=\int_1^2 (8t^3+2-15t^{-3})dt</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |We integrate to get | ||
|- | |- | ||
− | | | + | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>. |
|- | |- | ||
− | |2) | + | |We now evaluate to get |
+ | |- | ||
+ | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> | ||
|} | |} | ||
− | ''' | + | '''(b)''' |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
Line 26: | Line 42: | ||
| | | | ||
|- | |- | ||
− | | | + | | |
|- | |- | ||
| | | | ||
Line 48: | Line 64: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |'''(a)''' <math>\frac{211}{8}</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:07, 27 January 2016
Evaluate
- a)
- b)
Foundations: |
---|
Integrating polynomials |
U substitution |
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |