Difference between revisions of "Implicit Differentiation"
(27 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Background == | == Background == | ||
− | So far, you may only have differentiated functions written in the form | + | |
− | <math>y=f | + | So far, you may only have differentiated functions written in the form <math style="vertical-align: -5px">y=f(x)</math>. But some functions are better described by an equation involving <math>x</math> and <math style="vertical-align: -4px">y</math>. For example, <math style="vertical-align: -5px">x^{2}+y^{2}=16</math> describes the graph of a circle with center <math>\left(0,0\right)</math> and radius 4, and is really the graph of two functions: <math style="vertical-align: -5px">y=\pm\sqrt{16-x^{2}}</math>, the upper and lower semicircles: |
− | equation involving <math>x</math> and <math>y</math>. For example, <math>x^{2}+y^{2}=16</math> describes | + | |
− | the graph of a circle with center <math>\left(0,0\right)</math> and radius 4, | + | {|cellpadding = "10" align="center" |
− | and is really the graph of two functions: <math>y=\pm\sqrt{16-x^{2}}</math>. | + | |[[File:Upper_semicircle.png|400px]] |
+ | | | ||
+ | |[[File:Lower_semicircle.png|400px]] | ||
+ | |} | ||
− | Sometimes, functions described by equations in <math>x</math> and <math>y</math> are too hard | + | Sometimes, functions described by equations in <math style="vertical-align: 0px">x</math> and <math style="vertical-align: -5px">y</math> are too hard to solve for <math style="vertical-align: -5px">y</math>, for example <math style="vertical-align: -5px">x^{3}+y^{3}=6xy</math>. This equation really describes 3 different functions of x, whose graph is the curve: |
− | to solve for <math>y</math>, for example <math>x^{3}+y^{3}=6xy</math>. This equation really describes 3 different functions of x, whose graph | + | |
− | is the | + | {|cellpadding="25" align="center" |
+ | |[[File:Curve.png|350px]] | ||
+ | |} | ||
+ | We want to find derivatives of these functions without having to solve for <math style="vertical-align: -5px">y</math> explicitly. We do this by implicit differentiation. The process is to take the derivative of both sides of the given equation with respect to <math>x</math>, and then do some algebra steps to solve for <math style="vertical-align: -5px">y'</math> (or <math>\dfrac{dy}{dx}</math> if you prefer), keeping in mind that <math style="vertical-align: -4px">y</math> is a function of <math style="vertical-align: 0px">x</math> throughout the equation. | ||
+ | |||
+ | == Warm-up exercises == | ||
+ | |||
+ | Given that <math style="vertical-align: -4px">y</math> is a function of <math style="vertical-align: 0px">x</math>, find the derivative of the | ||
+ | following functions with respect to <math style="vertical-align: 0px">x</math>. | ||
+ | |||
+ | '''1)''' <math style="vertical-align: -5px">y^{2}</math> | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">2yy'</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Reason: | ||
+ | |- | ||
+ | |Think <math style="vertical-align: -5px">y=f(x)</math>, and view it as <math style="vertical-align: -5px">(f(x))^{2}</math> to see that the derivative is <math style="vertical-align: -5px">2f(x)\cdot f'(x)</math> by the chain rule, but write it as <math style="vertical-align: -4px">2yy'</math>. | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math style="vertical-align: -5px">xy</math> | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">xy'+y</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Reason: | ||
+ | |- | ||
+ | |<math>x</math> and <math style="vertical-align: -5px">y</math> are both functions of <math>x</math> which are being multiplied together, so the product rule says it's <math style="vertical-align: -5px">x\cdot y'+y\cdot1</math>. | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''3)''' <math style="vertical-align: -5px">\cos y</math> | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">-y'\sin y</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Reason: | ||
+ | |- | ||
+ | |The function <math style="vertical-align: -5px">y</math> is inside of the cosine function, so the chain rule gives <math style="vertical-align: -5px">(-\sin y)\cdot y'=-y'\sin y</math>. | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''4)''' <math style="vertical-align: -5px">\sqrt{x+y}</math> | ||
− | + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | |
− | + | !Solution: | |
− | + | |- | |
− | + | |<math style="vertical-align: -20px">\frac{1+y'}{2\sqrt{x+y}}</math> | |
− | + | |- | |
− | + | |} | |
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Reason: | ||
+ | |- | ||
+ | |Write it as <math style="vertical-align: -5px">(x+y)^{\frac{1}{2}}</math>, and use the chain rule to get <math style="vertical-align: -15px">\frac{1}{2}\left(x+y\right)^{-\frac{1}{2}}\cdot\left(1+y'\right)</math>, then simplify. | ||
+ | |- | ||
+ | |} | ||
− | == | + | == Exercise 1: Compute ''y''' == |
− | + | Find <math style="vertical-align: -4px">y'</math> if <math style="vertical-align: -4px">\sin y-3x^{2}y=8</math>. | |
− | + | Note the <math style="vertical-align: -4px">\sin y</math> term requires the chain rule, the <math style="vertical-align: -4px">3x^{2}y</math>  term needs the product rule, and the derivative of 8 is 0. | |
− | |||
− | the chain rule | ||
− | product rule | ||
− | of 8 is | ||
− | + | We get | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
\sin y-3x^{2}y & = & 8\\ | \sin y-3x^{2}y & = & 8\\ | ||
− | \left(\cos y\right) | + | \left(\cos y\right)y'-\left(3x^{2}y'+6xy\right) & = & 0\quad (\text{derivative of both sides with respect to } x)\\ |
− | \left(\cos y\right) | + | \left(\cos y\right)y'-3x^{2}y' & = & 6xy\\ |
\left(\cos y-3x^{2}\right)y' & = & 6xy\\ | \left(\cos y-3x^{2}\right)y' & = & 6xy\\ | ||
− | y' & = & \dfrac{6xy}{\cos y-3x^{2}} | + | y' & = & \dfrac{6xy}{\cos y-3x^{2}}. |
\end{array}</math> | \end{array}</math> | ||
− | 2 | + | == Exercise 2: Find equation of tangent line == |
− | at the point <math>\left( | + | |
+ | Find the equation of the tangent line to <math style="vertical-align: -4px">x^{2}+2xy-y^{2}+x=2</math>  at the point <math>\left(1,0\right)</math>. | ||
− | We first compute <math>y'</math> by implicit differentiation | + | We first compute <math style="vertical-align: -5px">y'</math> by implicit differentiation. |
− | |||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | + | x^{2}+2xy-y^{2}+x & = & 2\\ | |
− | + | 2x+2xy'+2y-2yy'+1 & = & 0\\ | |
− | + | x+xy'+y-yy'+\frac{1}{2} & = & 0\\ | |
− | + | xy'-yy' & = & -x-y-\frac{1}{2}\\ | |
− | + | (x-y)y' & = & -(x+y+\frac{1}{2})\\ | |
− | y' & = & \dfrac{ | + | y' & = & -\dfrac{x+y+\frac{1}{2}}{x-y} |
\end{array}</math> | \end{array}</math> | ||
+ | At the point <math>\left(1,0\right)</math>, we have <math style="vertical-align: -1px">x=1</math> and <math>y=0</math>. Plugging these into our equation for <math style="vertical-align: -5px">y'</math> gives | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | y' & = & -\dfrac{1+0+\frac{1}{2}}{1-0} = -\frac{3}{2}.\\ | ||
+ | |||
+ | \end{array}</math> | ||
− | + | This means the slope of the tangent line at <math>\left(1,0\right)</math> is <math style="vertical-align: -13px">m=-\frac{3}{2}</math>, and a point on this line is <math>\left(1,0\right)</math>. Using the point-slope form of a line, we get | |
− | and <math> | ||
− | |||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | y | + | y-0 & = & -\frac{3}{2}\left(x-1\right)\\ |
− | + | \\ | |
− | + | y & = & -\frac{3}{2}x+\frac{3}{2}.\\ | |
− | |||
\end{array}</math> | \end{array}</math> | ||
+ | Here's a picture of the curve and tangent line: | ||
− | + | [[File:Tangent_line_and_curve.png|300px]] | |
− | |||
− | |||
− | : | + | == Exercise 3: Compute ''y"'' == |
− | |||
− | y | ||
− | |||
− | |||
− | + | Find <math style="vertical-align: -5px">y''</math> if <math>ye^{y}=x</math>. | |
− | Use implicit differentiation to find <math>y'</math> first: | + | Use implicit differentiation to find <math style="vertical-align: -5px">y'</math> first: |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | + | ye^{y} & = & x\\ | |
− | + | ye^{y}y'+y'e^{y} & = & 1\\ | |
y'\left(ye^{y}+e^{y}\right) & = & 1\\ | y'\left(ye^{y}+e^{y}\right) & = & 1\\ | ||
y' & = & \dfrac{1}{ye^{y}+e^{y}}\\ | y' & = & \dfrac{1}{ye^{y}+e^{y}}\\ | ||
− | & | + | & = & \left(ye^{y}+e^{y}\right)^{-1} |
\end{array}</math> | \end{array}</math> | ||
− | Now <math>y''</math> is just the derivative of <math>\left(ye^{y}+e^{y}\right)^{-1}</math> | + | Now <math style="vertical-align: -5px">y''</math> is just the derivative of <math style="vertical-align: -5px">\left(ye^{y}+e^{y}\right)^{-1}</math> with respect to <math>x</math>. This will require the chain rule. Notice we already found the derivative of <math style="vertical-align: -5px">ye^{y}</math> to be <math style="vertical-align: -5px">ye^{y}y'+y'e^{y}</math>. |
− | with respect to <math>x</math> | + | |
− | the chain rule. | + | So |
− | to be <math>ye^{y}y'+y'e^{y}</math>. So | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
y'' & = & -1\left(ye^{y}+e^{y}\right)^{-2}\left(ye^{y}y'+y'e^{y}+e^{y}y'\right)\\ | y'' & = & -1\left(ye^{y}+e^{y}\right)^{-2}\left(ye^{y}y'+y'e^{y}+e^{y}y'\right)\\ | ||
− | & = & \dfrac{-1}{\left(ye^{y}+e^{y}\right)^{2}} | + | \\ |
+ | & = & \dfrac{-1}{\left(ye^{y}+e^{y}\right)^{2}}\left(ye^{y}y'+2y'e^{y}\right)\\ | ||
+ | \\ | ||
& = & -\dfrac{y'e^{y}\left(y+2\right)}{\left(e^{y}\right)^{2}\left(y+1\right)^{2}}\\ | & = & -\dfrac{y'e^{y}\left(y+2\right)}{\left(e^{y}\right)^{2}\left(y+1\right)^{2}}\\ | ||
− | & = & -\dfrac{y'\left(y+2\right)}{e^{y}\left(y+1\right)^{2}} | + | \\ |
+ | & = & -\dfrac{y'\left(y+2\right)}{e^{y}\left(y+1\right)^{2}}\quad (\text{since } e^{y}\neq0). | ||
\end{array}</math> | \end{array}</math> | ||
− | But we mustn't leave <math>y'</math> in our final answer. So, plug <math>y'=\dfrac{1}{e^{y}\left(y+1\right)}</math> | + | But we mustn't leave <math style="vertical-align: -5px">y'</math> in our final answer. So, plug <math>y'=\dfrac{1}{e^{y}\left(y+1\right)}</math> |
back in to get | back in to get | ||
− | <math>\begin{array}{rcl} | + | ::<math>\begin{array}{rcl} |
y'' & = & -\dfrac{\frac{1}{e^{y}\left(y+1\right)}\left(y+2\right)}{e^{y}\left(y+1\right)^{2}}\\ | y'' & = & -\dfrac{\frac{1}{e^{y}\left(y+1\right)}\left(y+2\right)}{e^{y}\left(y+1\right)^{2}}\\ | ||
+ | \\ | ||
& = & -\dfrac{y+2}{\left(e^{y}\right)^{2}\left(y+1\right)^{3}} | & = & -\dfrac{y+2}{\left(e^{y}\right)^{2}\left(y+1\right)^{3}} | ||
\end{array}</math> | \end{array}</math> |
Latest revision as of 18:59, 23 November 2015
Background
So far, you may only have differentiated functions written in the form . But some functions are better described by an equation involving and . For example, describes the graph of a circle with center and radius 4, and is really the graph of two functions: , the upper and lower semicircles:
![]() |
![]() |
Sometimes, functions described by equations in and are too hard to solve for , for example . This equation really describes 3 different functions of x, whose graph is the curve:
![]() |
We want to find derivatives of these functions without having to solve for explicitly. We do this by implicit differentiation. The process is to take the derivative of both sides of the given equation with respect to , and then do some algebra steps to solve for (or if you prefer), keeping in mind that is a function of throughout the equation.
Warm-up exercises
Given that is a function of , find the derivative of the following functions with respect to .
1)
Solution: |
---|
Reason: |
---|
Think , and view it as to see that the derivative is by the chain rule, but write it as . |
2)
Solution: |
---|
Reason: |
---|
and are both functions of which are being multiplied together, so the product rule says it's . |
3)
Solution: |
---|
Reason: |
---|
The function is inside of the cosine function, so the chain rule gives . |
4)
Solution: |
---|
Reason: |
---|
Write it as , and use the chain rule to get , then simplify. |
Exercise 1: Compute y'
Find if .
Note the term requires the chain rule, the term needs the product rule, and the derivative of 8 is 0.
We get
Exercise 2: Find equation of tangent line
Find the equation of the tangent line to at the point .
We first compute by implicit differentiation.
At the point , we have and . Plugging these into our equation for gives
This means the slope of the tangent line at is , and a point on this line is . Using the point-slope form of a line, we get
Here's a picture of the curve and tangent line:
Exercise 3: Compute y"
Find if .
Use implicit differentiation to find first:
Now is just the derivative of with respect to . This will require the chain rule. Notice we already found the derivative of to be .
So
But we mustn't leave in our final answer. So, plug
back in to get
as our final answer.