031 Review Part 3, Problem 1

From Grad Wiki
Jump to navigation Jump to search

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
To answer this question, we examine the eigenvalues and eigenvectors of  
Since    is a triangular matrix, the eigenvalues are the entries on the diagonal.
Hence, the only eigenvalue of    is  
Step 2:  
Now, we find a basis for the eigenspace corresponding to    by solving  
We have
       
Solving this system, we see    is a free variable and  
Therefore, a basis for this eigenspace is
Step 3:  
Now, we know that    only has one linearly independent eigenvector.
By the Diagonalization Theorem,    must have    linearly independent eigenvectors to be diagonalizable.
Hence,    is not diagonalizable.

(b)

Step 1:  
First, we find the eigenvalues of    by solving  
Using cofactor expansion, we have

       

Therefore, setting
 
we find that the eigenvalues of    are    and  
Step 2:  
Now, we find a basis for each eigenspace by solving    for each eigenvalue  
For the eigenvalue    we have

       

We see that    is a free variable. So, a basis for the eigenspace corresponding to    is
Step 3:  
For the eigenvalue    we have

       

We see that    and    are free variables. So, a basis for the eigenspace corresponding to    is
Step 4:  
Since    has    linearly independent eigenvectors,    is diagonalizable by the Diagonalization Theorem.
Using the Diagonalization Theorem, we can diagonalize    using the information from the steps above.
So, we have


Final Answer:  
   (a)       is not diagonalizable.
   (b)       is diagonalizable and  

Return to Review Problems